Pareto Density Estimation: A Density Estimation for Knowledge Discovery
نویسنده
چکیده
Pareto Density Estimation (PDE) as defined in this work is a method for the estimation of probability density functions using hyperspheres. The radius of the hyperspheres is derived from optimizing information while minimizing set size. It is shown, that PDE is a very good estimate for data containing clusters of Gaussian structure. The behavior of the method is demonstrated with respect to cluster overlap, number of clusters, different variances in different clusters and application to high dimensional data. For high dimensional data PDE is found to be appropriate for the purpose of cluster analysis. The method is tested successfully on a difficult high dimensional real world problem: stock picking in falling markets.
منابع مشابه
Pareto Density Estimation: Probability Density Estimation for Knowledge Discovery
Pareto Density Estimation (PDE) as defined in this work is a method for the estimation of probability density functions using hyperspheres. The radius of the hyperspheres is derived from optimizing information while minimizing set size. It is shown, that PDE is a very good estimate for clusters of Gaussian structure. The robustness of the method is tested with respect to cluster overlap, number...
متن کاملتخمین احتمال بزرگی زمینلغزشهای رخداده در حوزه آبخیز پیوهژن (استان خراسان رضوی)
Knowing the number, area, and frequency of landslides occurred in each area has a prominent role in the long-term evolution of area dominated by landslides and can be used for analyzing of susceptibility, hazard, and risk. In this regard, the current research is trying to consider identified landslides size probability in the Pivejan Watershed, Razavi Khorasan Province. In the first step, lands...
متن کاملComparison of the Gamma kernel and the orthogonal series methods of density estimation
The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...
متن کاملWavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables
Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.
متن کاملMaps for the Visualization of high-dimensional Data Spaces
-The U-Matrix is a canonical tool for the display of distance structures in data space using emergent SOM (ESOM). The U-Matrix defined originally for planar map spaces is extended in this work to toroid neuron spaces. Embedding the neuron space in a finite but borderless space, such as a torus, avoids border effects of planar spaces. A planar display of a toroid map space disrupts, however, coh...
متن کامل